股票kdj指数-股票kdj指数怎么看

2023-05-01 09:09:38 技术指标 0次阅读 投稿:admin
股票kdj指数.jpg

关于股票kdj指数的问题,我们总结了以下几点,给你解答:

股票kdj指数多少


股票kdj指数多少

KDJ指标
指标说明
KDJ,其综合动量观念、强弱指标及移动平均线的优点,
早年应用在期货投资方面,功能颇为显著,目前为股市中最常
被使用的指标之一。
买卖原则
1 K线由右边向下交叉D值做卖,K线由右边向上交叉D值做买。
2 高档连续二次向下交叉确认跌势,低挡连续二次向上交叉
确认涨势。
3 D值<20%超卖,D值>80%超买,J>100%超买,J<10%超卖。
4 KD值于50%左右徘徊或交叉时,无意义。
5 投机性太强的个股不适用。
6 可观察KD值同股价的背离,以确认高低点。
1.指标>80 时,回档机率大;指标<20时,反弹机率大;
2.k在20左右向上交叉d时,视为买进信号;
3.k在80左右向下交叉d时,视为卖出信号;
4.j>100 时,股价易反转下跌;j<0 时,股价易反转上涨;
5.kdj 波动于50左右的任何信号,其作用不大。
仅供参考。
股市有风险,......!

股票kdj指数


股票kdj指数


:param stock_data:
:return:
"""
stock_data['RSV'] = (stock_data['close'] - stock_data['low'].rolling(9).min()) / (
stock_data['high'].rolling(9).max() - stock_data['low'].rolling(9).min()) * 100
stock_data['K'] = stock_data['RSV'].ewm(com=2).mean()
stock_data['D'] = stock_data['K'].ewm(com=2).mean()
stock_data['J'] = 3 * stock_data['K'] - 2 * stock_data['D']
return stock_data


def get_macd(stock_data):
"""
计算股票macd指数
:param stock_data:
:return:
"""
stock_data['EMA12'] = stock_data['close'].ewm(span=12).mean()
stock_data['EMA26'] = stock_data['close'].ewm(span=26).mean()
stock_data['DIF'] = stock_data['EMA12'] - stock_data['EMA26']
stock_data['DEA'] = stock_data['DIF'].ewm(span=9).mean()
stock_data['MACD'] = 2 * (stock_data['DIF'] - stock_data['DEA'])
return stock_data


def get_boll(stock_data):
"""
计算股票布林线指数
:param stock_data:
:return:
"""
stock_data['MA20'] = stock_data['close'].rolling(20).mean()
stock_data['MD'] = stock_data['close'].rolling(20).std()
stock_data['UPPER'] = stock_data['MA20'] + 2 * stock_data['MD']
stock_data['LOWER'] = stock_data['MA20'] - 2 * stock_data['MD']
return stock_data


def get_rsi(stock_data):
"""
计算股票rsi指数
:param stock_data:
:return:
"""
stock_data['DIFF'] = stock_data['close'].diff()
stock_data['UP'] = stock_data['DIFF'][stock_data['DIFF'] > 0].fillna(0)
stock_data['DOWN'] = -stock_data['DIFF'][stock_data['DIFF'] < 0].fillna(0)
stock_data['EMA_UP'] = stock_data['UP'].ewm(com=14).mean()
stock_data['EMA_DOWN'] = stock_data['DOWN'].ewm(com=14).mean()
stock_data['RS'] = stock_data['EMA_UP'] / stock_data['EMA_DOWN']
stock_data['RSI'] = 100 - (100 / (1 + stock_data['RS']))
return stock_data


def get_cci(stock_data):
"""
计算股票cci指数
:param stock_data:
:return:
"""
stock_data['TP'] = (stock_data['high'] + stock_data['low'] + stock_data['close']) / 3
stock_data['MA_TP'] = stock_data['TP'].rolling(14).mean()
stock_data['MD'] = stock_data['TP'].rolling(14).std()
stock_data['CCI'] = (stock_data['TP'] - stock_data['MA_TP']) / (0.015 * stock_data['MD'])
return stock_data


def get_wr(stock_data):
"""
计算股票wr指数
:param stock_data:
:return:
"""
stock_data['HIGH_LOW'] = stock_data['high'] - stock_data['low']
stock_data['HIGH_CLOSE'] = stock_data['high'] - stock_data['close'].shift(1)
stock_data['LOW_CLOSE'] = stock_data['low'] - stock_data['close'].shift(1)
stock_data['WR1'] = 100 * stock_data['HIGH_LOW'] / stock_data['HIGH_CLOSE']
stock_data['WR2'] = 100 * stock_data['HIGH_LOW'] / stock_data['LOW_CLOSE']
stock_data['WR'] = (stock_data['WR1'] + stock_data['WR2']) / 2
return stock_data


def get_obv(stock_data):
"""
计算股票obv指数
:param stock_data:
:return:
"""
stock_data['OBV'] = stock_data['volume']
stock_data['OBV'][stock_data['close'] > stock_data['close'].shift(1)] = stock_data['volume'][
stock_data['close'] > stock_data['close'].shift(1)]
stock_data['OBV'][stock_data['close'] < stock_data['close'].shift(1)] = -stock_data['volume'][
stock_data['close'] < stock_data['close'].shift(1)]
stock_data['OBV'] = stock_data['OBV'].cumsum()
return stock_data


def get_arbr(stock_data):
"""
计算股票arbr指数
:param stock_data:
:return:
"""
stock_data['BR'] = (stock_data['high'] - stock_data['close'].shift(1)) / (
stock_data['close'].shift(1) - stock_data['low']) * stock_data['volume']
stock_data['AR'] = (stock_data['high'] - stock_data['close'].shift(1)) / (
stock_data['close'].shift(1) - stock_data['low']) * stock_data['close'].diff()
stock_data['ARBR'] = (stock_data['AR'] / stock_data['BR']).fillna(0)
return stock_data


def get_dma(stock_data):
"""
计算股票dma指数
:param stock_data:
:return:
"""
stock_data['MA10'] = stock_data['close'].rolling(10).mean()
stock_data['MA50'] = stock_data['close'].rolling(50).mean()
stock_data['DMA'] = stock_data['MA10'] - stock_data['MA50']
return stock_data


def get_trix(stock_data):
"""
计算股票trix指数
:param stock_data:
:return:
"""
stock_data['EMA12'] = stock_data['close'].ewm(span=12).mean()
stock_data['EMA12_2'] = stock_data['EMA12'].ewm(span=12).mean()
stock_data['EMA12_3'] = stock_data['EMA12_2'].ewm(span=12).mean()
stock_data['TRIX'] = (stock_data['EMA12_3'] - stock_data['EMA12_3'].shift(1)) / stock_data['EMA12_3'].shift(1)
return stock_data


def get_vr(stock_data):
"""
计算股票vr指数
:param stock_data:
:return:
"""
stock_data['UP'] = stock_data['close'] - stock_data['close'].shift(1)
stock_data['UP_ABS'] = stock_data['UP'].apply(lambda x: abs(x))
stock_data['DOWN'] = stock_data['close'].shift(1) - stock_data['low']
stock_data['

股票kdj指数怎么看


股票kdj指数怎么看

股票kdj线图的看法:KDJ指标的中文印剧严除饭意复值火略日名称是随机指数,最早起源于期货市场。 KDJ指标的应用法则KDJ指标是三条曲线,在应用时主要从五个方面进行考虑:KD的取值的绝对数字;KD曲线的形态;KD指标的交叉;KD指标的背离来自;J指标的取值大小。 第一,从KD的取值方面考虑。KD的取值范围都是0~100,将其划分为几个区域:80以上为超买区,20以下为超卖区,其余为徘徊区。 根据这种划分,KD超过80就应该考虑卖出了,低于20就应该考虑买入了。应该说明的是,上述划分只般审信绝马破是一个应用KD指标的初步过程,仅仅是信号,完全按这种方法进行操作很容易招致损失。 第二,从KD指标曲线的形态方面考虑。日许啊比题得项食唱命当KD指标在较高或较低的位置形成了头肩形和多重顶(底)时,是采取行动的信号。注意,这些形态一定要在较高位置或较低位置出现,位置越高或越低,结论越可靠。 第三,从KD指标的交叉方面考虑。K与D的关系就如同股价与MA的关系一样,也有死亡交叉和黄金够确交叉的问题,不过这里交叉的应用是很复杂的,还附带很多其他条件。



声明:稳得一批是理财投资基础知识平台! 并不指导专业性投资! 投资有风险,入市需谨慎!